
DataGrid

Pan Language Specification

version 2.0.2

Document identifier: DataGrid-04-TED-0153

EDMS id: 357584

Date: April 2, 2003

Work package: Fabric Management (WP4)

Partner(s): CERN

Lead Partner: CERN

Document status: APPROVED

Author(s): Lionel Cons and Piotr Poznański

File: pan-spec

Abstract: This document describes Pan, the High Level Description (HLD) language used to describe
system configurations for the EDG Fabric Management Work Package (WP4).

IST-2000-25182 PUBLIC 1/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

CONTENTS

1. INTRODUCTION . 4

1.1. DOCUMENT CONVENTIONS. 4
1.2. CONFIGURATION INFORMATION. 4
1.3. PATHS . 5
1.4. IDENTIFIERSAND NAMES . 5
1.5. PROCESSING. 5

2. MAIN SYNTAX . 7

2.1. TEMPLATES. 7
2.2. STATEMENTS . 8

3. DATA M ANIPULATION L ANGUAGE . 10

3.1. LITERALS . 10
3.2. FLOW CONTROL . 12
3.3. OPERATORS . 13
3.4. FUNCTIONS. 14
3.5. VARIABLES . 24

4. TYPES. 25

4.1. INTRODUCTION . 25
4.2. TYPES’ H IERARCHY . 25
4.3. DATA TYPES. 26
4.4. BUILTIN TYPES . 27
4.5. ALIAS TYPE . 27
4.6. LINK TYPE . 28
4.7. LIST TYPE. 28
4.8. TABLE TYPE. 29
4.9. RECORDTYPE . 29
4.10. EXAMPLES OF GLOBAL SCHEMA . 29
4.11. EMBEDDED DOCUMENTATION . 30

5. ADVANCED FEATURES . 31

5.1. VALIDATION . 31
5.2. USERDEFINED FUNCTIONS. 31
5.3. GLOBAL VARIABLES . 32

6. FOR M ORE I NFORMATION . 34

6.1. GLOSSARY . 34
6.2. ACRONYMS. 34
6.3. REFERENCES. 35

IST-2000-25182 PUBLIC 2/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

A SAMPLE FUNCTIONS . 36

B SAMPLE TYPES . 38

C SAMPLE STRUCTURE TEMPLATES . 40

D SAMPLE TEMPLATES . 42

E SAMPLE OBJECT TEMPLATES . 43

F SAMPLE XML . 44

G EXAMPLE OF CROSSOBJECT VALIDATION . 46

H V ERSION H ISTORY . 49

IST-2000-25182 PUBLIC 3/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

1. INTRODUCTION

This document describes Pan, a High Level Description (HLD) language used to represent system
configurations. The HLD source files reside in the Configuration Database (CDB)[1] and are com-
piled into Low Level configuration Descriptions (LLD). The LLD specification is available in an other
document[3].

1.1. DOCUMENT CONVENTIONS

Here are the typographical conventions used in this document.

All the examples look like this:

example ...

In paragraphs, configuration element paths are represented like this:"/hardware/cpus" .

Formal syntax descriptions are represented inside boxes, for instance:

statement7→ include template-name‘ ;’

Non-terminal symbols (such asstatement) are represented in italic. Terminal symbols (such asin-
clude) are represented in bold. When the font face is not sufficient to recognise them, terminal symbols
are enclosed between quotes (such as ‘;’).

Grouping is done through parenthesis, alternation is represented by a vertical bar (i.e.|) and optional
parts with square brackets.

1.2. CONFIGURATION INFORMATION

The configuration information is represented by a tree of configuration parameters. For instance:

/hardware/memory/size = 256
/hardware/cpus/0/vendor = GenuineIntel
/hardware/cpus/0/model = Pentium III (Coppermine)
/hardware/cpus/0/speed = 800
/system/filesystems/0/name = root
/system/filesystems/0/device = /dev/hda1
/system/filesystems/0/mountpoint = /
/system/filesystems/0/type = ext2
/system/filesystems/0/options = defaults
/system/filesystems/1/name = cd
/system/filesystems/1/device = /dev/cdrom
/system/filesystems/1/mountpoint = /mnt/cdrom
/system/filesystems/1/type = iso9660
/system/filesystems/1/options = noauto,owner,ro

IST-2000-25182 PUBLIC 4/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

Simple values (like strings or numbers) form the leaves of this tree and are calledproperties. Internal
nodes of the tree are calledresourcesand are used to groupelements1 into lists (accessed by index)
or named lists (akanlists, accessed by name). Nlists can conveniently be used to represent tables or
records2. Every element has a uniquepathwhich identifies its position in the tree.

1.3. PATHS

In Pan source files, paths are represented by strings with a format similar to UNC.
A path can berelative(does not start with a slash and is relative to wherever it will be hooked in the

tree, e.g."speed"), absolute(starts with a single slash and uniquely identifies a configuration param-
eter, e.g."/hardware/memory/size") or external(starts with a double slash and contains the name
of the object it refers to followed by an absolute path, e.g."//pcsrv05/hardware/memory/size").

Path components can only be identifiers (see section 1.4.) or numbers. A component such ascache-
size or 1x are therefore invalid.

A numerical component is always interpreted as a child index inside a list. Therefore, a path such
as"/hardware/cpus/0" identifies the first element of the list"/hardware/cpus" . Like in C,
indexes always start at 0.

Non-numerical components identify named children within nlists. Decoding"/hardware/cpus" ,
we see that"/" is a nlist containing a child named ”hardware” and"/hardware" is also a nlist with
a child named ”cpus”.

1.4. IDENTIFIERS AND NAMES

A valid identifier is made of one letter or underscore (‘’) character followed by zero or more let-
ters, digits or underscore characters. Thereforex1 and foo bar are valid while1x , foo-bar and
foo::bar are not.

A valid template-nameis made of one letter, digit or underscore character followed by zero or more
letters, digits or underscore, minus (‘−’), plus (‘+’) or dot (‘.’) characters. Any valid Internet host name
(e.g.127.0.0.1 or myhost.foo-bar.org) is therefore a valid template name.

In Pan, all the other names (of variables, functions, types. . .) must be valid identifiers. Also, they
cannot be reserved keywords (i.e. the terminal symbols in the syntax definitions) such asinclude or type.

It is allowed to use the same name for different things. You can have at the same time a function
namedfoo and a variable namedfoo .

1.5. PROCESSING

The exact behaviour of the compiler (including its command line options, error messages, . . .) is not
part of this specification and should be described in the compiler’s documentation.

However, for each template, the processing of the Pan sources must happen in three consecutive
stages. First, during thecompilation, all the Pan statements are executed and the configuration tree in
memory is updated accordingly. Secondly, duringvalidation, the (now read-only) configuration tree is

1The termelementrefers to either a property or a resource.
2I.e. similar to Pascal’srecord or C’sstruct .

IST-2000-25182 PUBLIC 5/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

validated using type and validation information. Finally, after a successful validation, the output file
(LLD) is created.

IST-2000-25182 PUBLIC 6/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

2. MAIN SYNTAX

Pan source files can include comments preceded by the hash sign (i.e. ‘#’). Everything from the hash
sign to the end of the line will be ignored. Space is not significant except of course when used inside
strings.

Pan consists of statements grouped into templates that are in turn grouped into source files. A source
file must contain at least one template and a template at least one statement. A template starts with a
template declaration and contains everything up to the end of the file or the next template declaration.
Formally:

file 7→ template-seq
template-seq7→ template [template-seq]
template 7→ template-decl statement-seq
statement-seq7→ statement[statement-seq]

2.1. TEMPLATES

There are four types of templates with slightly different behaviours. The type of template is specified
in the template declaration:

template-decl7→ [declaration | object | structure] template template-name‘ ;’

Templates are identified by unique names (thetemplate-nameabove) and it is recommended to use
a naming convention to logically group similar templates. For instance, all the structure templates rep-
resenting disks could start withdisk , like in Appendix C. This naming convention is outside of the
scope of this document.

An ordinary template(i.e. without any leading keyword) can contain any kind of statement but
assignments and delete statements must act on absolute paths.

A declaration templatecan only contain declaration statements, i.e. that do not modify the config-
uration tree3. Also, it can only include other declaration templates. When included several times, the
declaration statements are executed only once. This is similar to C header files with the magic#ifdef
lines preventing multiple (re)declarations.

An object templatebehaves like an ordinary template except that it is associated with a LLD. The
Pan compiler will by default generate one LLD file per object template found. The name of the LLD file
will be the name of the template plus the.xml suffix. Object templates cannot be included by any other
template.

A structure templatecan only contain assignment and delete statements (and these must act on rel-
ative paths). Additionally, it can only include other structure templates. Structure template are used by
thecreate function.

3These are all the statements except assignment and delete statements.

IST-2000-25182 PUBLIC 7/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

2.2. STATEMENTS

Here are the three main Pan statements. The others are explained in other (more advanced) sections
of this document. The best source of examples is the Appendix part of this document where all the
different statements are used in realistic situations.

All the statements (as well as the template declarations) end with a semicolon (i.e. ‘;’).

include

statement7→ include template-name‘ ;’

The include statement is very similar tocpp ’s #include directive. During the processing, the
named template is almost physically included and its statements are executed as if they were in the
including template. This can be used to represent some kind of inheritance.

A template may be included multiple times but loops are not allowed. As explained above (see
section 2.1.), declaration templates are immune to multiple inclusions.

There are some restrictions on who can include what. Object templates cannot be included. Structure
templates can only include and be included by other structure templates. Declaration templates can only
include other declaration templates. The other situations are allowed.

assignement

statement7→ path ‘=’ dml ‘ ;’
path 7→ string

Assignment statements are used to modify a part of the configuration tree by replacing the subtree
identified by itspathby the result of the execution of the Data Manipulation Language expressiondml.
This result can be a single property (only one leaf of the tree is changed) or a resource holding any
number of elements (a real subtree is changed).

The path is represented by a string literal, see section 3.1.4.. We usually use double quoted strings
but any string will do.

If there is no subtree with the given path in configuration tree, it is created with all the necessary
parent and lateral elements.

assuming the configuration tree is empty

/x and /x/a are created, /x/a get the value 1
"/x/a" = 1;

/y, /y/0 and /y/1 are created, /y/1 get the value 2
/y/0 has the undefined value (undef)
"/y/1" = 2;

/y is replaced by a new list of three elements
"/y" = list(4, 5, 6);

As explained in the Types section, the Pan compiler always makes sure that the elements that get
assigned to have compatible types. See section 4.3. for more information.

IST-2000-25182 PUBLIC 8/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

delete

statement7→ delete path ‘ ;’

This statement deletes a subtree of configuration identified by itspath.
When the parent resource is a list, the subsequent children are moved to fill the hole:

list of three elements
"/list" = list(0, 1, 2);
we delete the second one
delete "/list/1";
/list now contains list(0, 2) and not list(0, undef, 2)

It is not an error if there is no subtree with the given path in configuration tree. In this case, the
statement has no effect.

It is (of course) forbidden to delete the root resource.

Other

In addition to these main statements, there are also others used for: type manipulation (see section 4.),
validation (see section 5.1.), user function definition (see section 5.2.) and global variable definition (see
section 5.3.).

IST-2000-25182 PUBLIC 9/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

3. DATA MANIPULATION LANGUAGE

The Data Manipulation Language (dml in the syntax definitions) is used to represent subtrees of
configuration information, from simple properties to complex resources.

It looks like C but is much simpler and, like in Lisp, every construct returns a value.

3.1. L ITERALS

Literal values are the building blocks that can be used to construct more complex expressions. For-
mally:

dml 7→ true | false | long | double | string | undef

Boolean Literals

The boolean literals are very simple, they are onlytrue andfalse, with obvious meanings.

Long Literals

The integer number literals are made of digits or of ‘0x’ followed by hexadecimal digits, for instance:

0
0755
2002
0x20
0xdeadbeef

They are stored in what the C compiler knows as thelong type so too many digits will cause an
overflow.

Numbers starting with a leading zero are considered as being octal so a number like019 is invalid.

Double Literals

The floating point number literals are made of digits followed by a single dot and more digits, or by
‘e’ or ‘ E’ followed by an optional sign and some digits, or by both. For instance:

0.01
3.1416
1e-8
6.02217e23

They are stored in what the C compiler knows as thedouble type so they will have the same
precision.

The part before the dot cannot be omitted so for instance.2 is not legal and must be written as0.2 .

IST-2000-25182 PUBLIC 10/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

String Literals

The string literals can be expressed in three different forms. They can be of any length and can
contain any character, including the NULL byte.

Single quoted stringsare used to represent short and simple strings. They cannot span several lines
and all the characters will appear verbatim in the string, except the doubled single quote which is used to
represent a single quote inside the string. For instance:

’foo’
’it’’s a sentence’
’ˆ\d+\.\d+$’

Double quoted stringsare more flexible and use the backslash to represent escape sequences. For
instance:

"foo"
"it’s a sentence"
"C style escapes: \t (tab) \r (carriage return) \n (newline)"
"Hexadecimal escapes: \x3d (=) \x00 (NULL byte) \x0A (newline)"
"Miscellaneous escapes: \" (double quote) \\ (backslash)"
"this string spans two lines and\

does not contain a newline"

Lastly,multi-line stringscan be represented using the ”here-doc” syntax, like in shell or Perl.

"test" = "foo" + <<EOT + "bar";
this code will assign to the path "test" the string
made of ‘foo’, plus this text including the final newline,
plus ‘bar’...
EOT

The easiest solution to put binary data inside Pan code is to Base64 encode it and put it inside ”here-
doc” strings like in the following (base64 decode is a builtin function):

"/system/binary/stuff" = base64_decode(<<EOT);
H4sIAOwLyDwAA02PQQ7DMAgE731FX9BT1f8QZ52iYhthEiW/r2SitCdmxCK0E3W8no+36n2G
8UbOrYYWGROCgurBe4JeCexI2ahgWF5rulaLtImkDxbucS0tcc3t5GXMAqeZnIYo+TvAmsL8
GGLobbUUX7pT+pxkXJc/5Bx5p0ki7Cgq5KccGrCR8PzruUfP2xfJgVqHCgEAAA==

EOT

undef

Finally, theundef literal can be used to represent the undefined element, i.e. an element which is
neither a property nor a resource.

The undefined element cannot be converted into LLD and most builtin functions will report a fatal
error when processing it. It can therefore be used to mark an element thatmustbe overwritten during the
processing. For instance:

structure template defining a disk
structure template disk_ibm_dtla_307030;
"type" = "disk";
"vendor" = "IBM";
"model" = "DTLA-307030";
"size" = 29314;

IST-2000-25182 PUBLIC 11/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

"serial" = undef; # must be changed outside of this template

object template not overwriting serial, will give an error
object template host1;
"devices/hda" = create("disk_ibm_dtla_307030");

object template overwriting serial, will process successfully
object template host2;
"devices/hda" = create("disk_ibm_dtla_307030");
"devices/hda/serial" = "IDCH128457";

idem but using create with additional parameters
object template host3;
"devices/hda" = create("disk_ibm_dtla_307030", "serial", "IDCH128457");

3.2. FLOW CONTROL

In Pan, three constructs allow you to control the flow of execution. Like in Lisp, they are in fact
normal expressions of the Data Manipulation Language so they always return a value.

Sequencing

To execute a sequence of DML instructions, separate them with semicolons and enclose them be-
tween curly braces. More formally:

dml 7→ ‘{’ dml-seq [‘ ;’] ‘ }’
dml-seq 7→ dml [‘ ;’ dml-seq]

The returned value is the value of the last instruction.

Branching

You can use theif construct to execute code conditionally. The syntax is:

dml 7→ if ‘ (’ dml ‘)’ dml
dml 7→ if ‘ (’ dml ‘)’ dml else dml

The returned value is the value of the last instruction of the branch that has been executed orundef
if no branch was executed.

Looping

Finally, you can use thewhile construct to execute some code repeatedly while an expression is true.

dml 7→ while ‘ (’ dml ‘)’ dml

The returned value is the value of the last instruction of the branch that has been executed orundef
if no branch was executed.

IST-2000-25182 PUBLIC 12/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

Examples

set swap variable to be 256 or 512 if RAM is bigger than 256
swap = if (value("/hardware/memory/size") > 256) 512 else 256;

nested ifs
if (name == "foo") {

do something for foo
value = 1;

} else if (name == "bar") {
do something for bar
value = 2;

} else {
do something else
value = 3;

};

iterate from 0 to 9
i = 0;
while (i <= 9) {

do something
i = i + 1;

};

3.3. OPERATORS

Pan’s operators are very close to C’s. The main difference is that most of them also work on strings,
replacing functions such asstrcmp or strcat .

The overall syntax for Pan operators (and grouping) is:

dml 7→ unary-op dml
dml 7→ dml binary-op dml
dml 7→ ‘ (’ dml ‘)’

The meanings and precedences are identical to C and won’t be repeated here.
In the following sections, anumbermeans either a long or a double.

Arithmetic Operators

The following operators work on numbers and produce a number:

unary-op 7→ ‘−’
binary-op 7→ ‘+’ | ‘−’ | ‘∗’ | ‘/’ | ‘%’

Note: ‘%’ only works on longs.

String Operator

The ‘+’ operator can also be used on strings and will produce a string which is the concatenation of
the two operands.

IST-2000-25182 PUBLIC 13/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

Comparison Operators

The following operators work on numbers and strings and produce a boolean:

binary-op 7→ ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘ ! =’

Note: both operands must be of the same type (i.e. two numbers or two strings), you can’t compare
a number with a string.

Boolean Operators

The following operators work on booleans and produce a boolean:

unary-op 7→ ‘ !’
binary-op 7→ ‘&&’ | ‘ ||’

Note: like in C, ‘&&’ and ‘||’ do ”short circuits” and only evaluate their second operand if the result
of the first operand is not enough to know the final result.

Example

while (i < length(names) && !found) {
if (names[i] == "foo")

found = true
else

i = i + 1;
};

See also Appendix A and Appendix B for more examples.

3.4. FUNCTIONS

Syntax

The overall syntax to call functions (be they builtin or user defined) in Pan is:

dml 7→ identifier ‘ (’ ‘)’
dml 7→ identifier ‘ (’ argument-seq[‘ ,’] ‘)’
argument-seq7→ dml [‘ ,’ argument-seq]

User defined functions are described in section 5.2..

Builtin Functions

All the builtin functions of the language are described below with the types of their arguments and
their return type (when meaningful). When given invalid arguments, they all trigger a fatal compiler
error.

IST-2000-25182 PUBLIC 14/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

base64decode(arg:string) : string

This function decodes the given string that must be Base64 (defined in RFC 2045) encoded.

"/test" = "[" + base64_decode("aGVsbG8gd29ybGQ=") + "]";
will be the string "[hello world]"

clone(arg:element) : element

This function returns a clone (copy) of the given argument.

create(name:string, . . .) : nlist

This function returns the named list which is the result of the execution of the structure template identified
by the given name; the optional extra parameters must be pairs of key and value and will add or modify
the result accordingly (a bit like withnlist).

description of a CD mount entry (but the device is unknown)
structure template mount_cdrom;
"device" = undef;
"path" = "/mnt/cdrom";
"type" = "iso9660";
"options" = list("noauto", "owner", "ro");

our first mount entry is the CD coming from hdc
"/system/mounts/0" = create("mount_cdrom", "device", "hdc");

this is exactly equivalent to the following two lines
"/system/mounts/0" = create("mount_cdrom");
"/system/mounts/0/device" = "hdc";

debug(message:string)

This function prints the given message onstdout when debugging is enabled with theDEBUGUSER
flag.

print the value of x if it is positive
if (x > 0)

debug("x is positive: " + to_string(x));

delete(arg:variable)

This function deletes the element identified by the ”variable expression” (i.e. variable name with optional
subscript such asfooor foo[123] or foo[123][”abc”] . . .).

IST-2000-25182 PUBLIC 15/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

the following will put the list ("a", "c") at path "/x"
"/x" = {

x = list("a", "b", "c");
delete(x[1]);
return(x);

};

error(message:string)

This function prints the given message onstderr and aborts the compilation.

user function requiring one long argument
define function foo = {

if (argc != 1)
error("foo(): wrong number of arguments: " + to_string(argc));

if (!is_long(argv[0]))
error("foo(): argument is not a long");

normal processing...
};

escape(arg:string) : string

This function escape non alphanumeric characters in the given string so that it can be used inside paths,
for instance as an named list key.

"/test" = escape("1+1");
will be the string "1_2b1"

exists(path:string) : boolean

This function checks if thepathcorresponds to an existing element.

exists(arg:variable) : boolean

This function checks if the ”variable expression” (seedelete function) corresponds to an existing
element.

first(arg:resource, key:identifier, value:identifier) : boolean

This function resets the iterator associated witharg so that it points to its first child element; if there is
one (i.e. if the resource is not empty), sets the variablekeyto the ”key” of this element (i.e. a long ifarg
is a list or a string if it is a nlist) and the variablevalueto the child element itself and returntrue ; if key
or valueis undef , don’t assign it; if there is no such child element, simply returnfalse .

IST-2000-25182 PUBLIC 16/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

compute the sum of the elements inside numlist
numlist = list(1, 2, 4, 8);
sum = 0;
ok = first(numlist, k, v);
while (ok) {

sum = sum + v;
ok = next(numlist, k, v);

};
sum will be 15

put the list of all the keys of table inside keys
table = nlist("a", 1, "b", 2, "c", 3);
keys = list();
ok = first(table, k, v);
while (ok) {

keys[length(keys)] = k;
ok = next(table, k, v);

};
keys will be ("a", "b", "c")

index (sub:string, arg:string) : long
index (sub:string, arg:string, start:long) : long

This function searches for the given substring inside the given string and returns its position from the
beginning of the string or -1 if not found; if the third argument is given, starts only from that position.

"/s1" = index("foo", "abcfoodefoobar"); # 3
"/s2" = index("f0o", "abcfoodefoobar"); # -1
"/s3" = index("foo", "abcfoodefoobar", 4); # 8

index (sub:property, arg:list) : long
index (sub:property, arg:list, start:long) : long

This function searches for the given property inside the given list of properties and returns its position or
-1 if not found; if the third argument is given, starts only from that position; it is an error ifsubandarg’s
children are not of the same type.

search in a list of strings
"/l1" = index("foo", list("Foo", "FOO", "foo", "bar"));
will be 2

search in a list of longs
"/l2" = index(1, list(3, 1, 4, 1, 6), 2);
will be 3

index (sub:property, arg:nlist) : string
index (sub:property, arg:nlist, start:long) : string

IST-2000-25182 PUBLIC 17/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

This function searches for the given property inside the given named list of properties and returns its
name or the empty string if not found; if the third argument is given, skips that many matching children;
it is an error ifsubandarg’s children are not of the same type.

simple color table
"/table" = nlist("red", 0xf00, "green", 0x0f0, "blue", 0x00f);

"/name1" = index(0x0f0, value("/table"));
will be the string "green"

"/name2" = index(0x0f0, value("/table"), 1);
will be the string ""

index (sub:nlist, arg:list) : long
index (sub:nlist, arg:list, start:long) : long

This function searches for the given named list inside the given list of named lists and returns its position
or -1 if not found; the comparison is done by comparing all the children ofsub, these children must all
be properties; if the third argument is given, starts only from that position; it is an error ifsubandarg’s
children are not of the same type or if their common children don’t have the same type.

search a record in a list of records
"/l1" = index(nlist("key", "foo"), list(nlist("key", "bar", "val", 101),

nlist("key", "foo", "val", 102)));
will be 1 (i.e. the second nlist)

index (sub:nlist, arg:nlist) : string
index (sub:nlist, arg:nlist, start:long) : string

This function searches for the given named list inside the given named list of named lists and returns its
name or the empty string if not found; if the third argument is given, skips that many matching children;
it is an error ifsubandarg’s children are not of the same type or if their common children don’t have the
same type.

is boolean(arg:element) : boolean

This function checks if the given argument is a boolean.

is defined(arg:element) : boolean

This function checks if the given argument is defined (i.e. is anything butundef).

IST-2000-25182 PUBLIC 18/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

is double(arg:element) : boolean

This function checks if the given argument is a double.

is list(arg:element) : boolean

This function checks if the given argument is a list.

is long(arg:element) : boolean

This function checks if the given argument is a long.

is nlist(arg:element) : boolean

This function checks if the given argument is a nlist.

is property(arg:element) : boolean

This function checks if the given argument is a property.

is resource(arg:element) : boolean

This function checks if the given argument is a resource.

is string(arg:element) : boolean

This function checks if the given argument is a string.

key(arg:nlist, index:long) : string

This function returns the name of the child identified by its index, this can be used to iterate through all
the children of a named list.

"/table" = nlist("red", 0xf00, "green", 0x0f0, "blue", 0x00f);
"/keys" = {

tbl = value("/table");
res = "";
len = length(tbl);
idx = 0;
while (idx < len) {

res = res + key(tbl, idx) + " ";

IST-2000-25182 PUBLIC 19/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

idx = idx + 1;
};
if (length(res) > 0)

splice(res, -1, 1);
return(res);

};
/keys will be the string "red green blue"

length(arg:resource) : long

This function returns the number of children of the given resource.

length(arg:string) : long

This function returns the length of the given string.

list(. . .) : list

This function returns a list made of its arguments.

the list of mount entries is empty
"/system/mounts = list();
we define two DNS servers
"/system/dns/servers" = list("137.138.16.5", "137.138.17.5");
this machine has only one CPU
"/hardware/cpus" = list(create("cpu_intel_p3_850"));

match(arg:string, regexp:string) : boolean

This function checks if the given string matches the regular expression.

device_t is a string that can only be "disk", "cd" or "net"
define type device_t = string with match(self, ’ˆ(disk|cd|net)$’);

matches(arg:string, regexp:string) : list

This function matches the given string against the regular expression and returns the list of captured
substrings, the first one being the complete matched string (i.e.$& in Perl).

IPv4 address in dotted number notation
define type ipv4 = string with {

result = matches(self, ’ˆ(\d+)\.(\d+)\.(\d+)\.(\d+)$’);
if (length(result) == 0)

IST-2000-25182 PUBLIC 20/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

return("bad string");
i = 1;
while (i <= 4) {

x = to_long(result[i]);
if (x > 255)

return("chunk " + to_string(i) + " too big: " + result[i]);
i = i + 1;

};
return(true);

};

merge(. . .) : resource

This function returns the resource which is the merge of its arguments which must be of the same type:
either all lists or all named lists; if several named lists have children of the same name, an error occurs.

"/x" = list("a", "b", "c");
"/y" = list("d", "e");
"/z" = merge (value("/x"), value("/y"));
/z will contain the list "a", "b", "c", "d", "e"

next(arg:resource, key:identifier, value:identifier) : boolean

This function increments the iterator associated witharg so that it points to the next child element and
then behaves likefirst .

nlist(. . .) : nlist

This function returns a named list made of its arguments which must be pairs of key (i.e. child’s name, a
string) and value (i.e. child’s value, an element).

hda1 is our root filesystem
"/system/mounts/0" = nlist("type", "ext2", "path", "/", "device", "hda1");
hda2 is our /var filesystem
"/system/mounts/1" = nlist(

"type", "ext2",
"path", "/var",
"device", "hda2",

);

return(arg:element) : element

This function interrupts the processing of the current DML block and returns from it with the given value,
this is often used in user defined functions.

IST-2000-25182 PUBLIC 21/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

define function facto = {
if (argv[0] < 2)

return(1);
return(argv[0] * facto(argv[0] - 1));

};

splice (arg:list, start:long, length:long) : list
splice (arg:list, start:long, length:long, new:list) : list

This function deletes the children of the given list identified bystart and length(seesubstr ’s docu-
mentation for details) and, if a fourth argument is given, replaces them with the contents ofnew.

"/l1" = splice(list("a","b","c","d","e"), 2, 0, list(1,2));
will be the list "a", "b", 1, 2, "c", "d", "e"

"/l2" = splice(list("a","b","c","d","e"), -2, 1);
will be the list "a", "b", "c", "e"

"/l3" = splice(list("a","b","c","d","e"), 2, 2, list("XXX"));
will be the list "a", "b", "XXX", "e"

splice (arg:string, start:long, length:long) : string
splice (arg:string, start:long, length:long, new:string) : string

This function deletes the substring identified bystart andlength(seesubstr ’s documentation for de-
tails) and, if a fourth argument is given, replaces it withnew.

"/s1" = splice("abcde", 2, 0, "12"); # ab12cde
"/s2" = splice("abcde", -2, 1); # abce
"/s3" = splice("abcde", 2, 2, "XXX"); # abXXXe

substr (arg:string, start:long) : string
substr (arg:string, start:long, length:long) : string

This function returns the part of the given string characterised by its start position (starting from 0) and
its length (if omitted, returns everything to the end of the string); ifstart is negative, starts that far from
the end of the string; iflengthis negative, leaves that many characters off the end of the string..

"/s1" = substr("abcdef", 2); # cdef
"/s2" = substr("abcdef", 1, 1); # b
"/s3" = substr("abcdef", 1, -1); # bcde
"/s4" = substr("abcdef", -4); # cdef
"/s5" = substr("abcdef", -4, 1); # c
"/s6" = substr("abcdef", -4, -1); # cde

IST-2000-25182 PUBLIC 22/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

to boolean(arg:property) : boolean

This function converts the given property into a boolean; 0 and the empty strings are considered as false,
everything else as true.

to double(arg:property) : double

This function converts the given property into a double; it is an error if the given string does not represent
a double.

to long(arg:property) : long

This function converts the given property into a long; it is an error if the given string does not represent
a long; if the argument is a double, it will be rounded to the nearest long.

to string(arg:property) : string

This function converts the given property into a string.

unescape(arg:string) : string

This function replace escaped characters in the given string to get back the original string, this is the
inverse of theescape function.

value(path:string) : element

This function returns the element identified by its path (which can be an external path), an error occurs if
there is no such element.

"/x" = 100;
"/y" = 2 * value("/x");
/y will be 200

we add one DNS server to the current list
(we need to use list() because merge() requires lists)
"/system/dns/servers" = merge(value("/system/dns/servers"),

list("137.138.16.5"));

the RAM of this machine is the same as the machine foo
"/hardware/memory/size" = value("//foo/hardware/memory/size");

IST-2000-25182 PUBLIC 23/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

3.5. VARIABLES

To ease data handling, you can use variables in any DML expression. They are by default lexically
scoped to the outermost enclosing DML expression. They do not need to be declared before they are
used.

As a first approximation, variables work the way you expect them to work. They can contain proper-
ties and resources and you can easily access resource children using square brackets:

populate /table which is a nlist
"/table/red" = "rouge";
"/table/green" = "vert";

"/test" = {
x = list("a", "b", "c"); # x is a list
y = value("/table"); # y is a nlist
z = x[1] + y["red"]; # z is a string
return(length(z)); # this will be 6

};

The formal syntax for variable manipulation is:

dml 7→ variable
dml 7→ variable ‘=’ dml
variable 7→ identifier
variable 7→ variable ‘ [’ dml ‘]’

A variable holding a resource will in fact hold some kind of pointer to it so variable assignments
will simply copy the pointer and not the data. You can use theclone function for this purpose. This is
illustrated in:

"/test" = {
x = list("a", "b", "c");
y = x; # y point to the same resource as x
z = clone(x); # z is a clone/copy of x
delete(x[1]); # we modify x by removing its second child
return(list(length(y), # this will be 2 as y points to x

length(z))); # this will be 3 as z is independent from x
};

Variables get automatically destroyed after the execution of the DML expression. Use global vari-
ables (see section 5.3.) if you need persistence.

More examples can be found in the Appendix part of this document.

IST-2000-25182 PUBLIC 24/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

4. TYPES

4.1. INTRODUCTION

Types are very important in Pan. Although no explicit type declaration is required, the compiler
permanently knows the type of all the elements it manipulates and makes sure that elements of different
types are not mixed by mistake.

In addition, through type declarations, one can impose arbitrary constraints on any part of the con-
figuration tree. When applied to the root of the configuration tree, this can be used to define a ”global
data schema”. The compiler, at validaion time, will make sure that the data indeed respects this global
schema.

There are two statements concerning types: one to define (name) a new type and one to attach a type
to a path. The syntax is:

statement7→ define type identifier ‘=’ type-spec‘ ;’
statement7→ type path ‘=’ type-spec‘ ;’

Types must be known before they are used and cannot be redefined. Several types can be attached to
the same path, the compiler will make sure that the data is compatible with all the attached types. The
syntax of the type specification (type-spec) is explained in the next sections, after the descriptions of the
data and builtin types.

4.2. TYPES’ H IERARCHY

Here are the different types in Pan:

element

resource property

list nlist

record table

boolean string long double

fetch stream embed link

Figure 1: Hierarchy of Pan Types

The arrows denote an ”is a” relation. For instance, a resource is an element and a string is a property.

IST-2000-25182 PUBLIC 25/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

The types in boxes are the data types, the ones in octagons are builtin while the others are user defined.
All are explained below.

4.3. DATA TYPES

The elements that the Pan compiler manipulates all have an intrinsic type which comes from the type
of their associated data. For instance, the following line:

"/hardware/cpus/0/speed" = 803.5;

is enough to deduce that the element at path"/hardware" is a nlist, the one at"/hardware/cpus"
is a list and the one at"/hardware/cpus/0/speed" is a double,

There are seven data types which are element, list, nlist (a.k.a. named list), boolean, string, long and
double. Theelementdata type is associated with the undefined data. For instance, with:

"/foo/1" = "test";
"/bar" = undef;

both"/foo/0" and"/bar" have an undefined value and therefore have theelementdata type.
The Pan compiler always makes sure that the elements that get assigned to have the same type (or

are undefined). A fatal error occurs otherwise. For instance:

assuming that /x has never been used before
"/x" = 1; # /x is now a long
"/x" = "1"; # fatal error: can’t assign a string to a long

and

assuming that /x has never been used before
"/x/0" = 1; # /x is now a list
"/x/a" = 2; # fatal error: can’t access a list by name

but

assuming that /x has never been used before
"/x" = 1; # /x is now a long
"/x" = undef; # ok as the element type is compatible with everything
"/x" = "1"; # ok as the element type is compatible with everything

Assignments of variables are treated exactly the same way:

"/test" = {
x = 1; # x is now a long
x = "1"; # fatal error: can’t assign a string to a long

};

The root resource is a bit special as it is forced to always be a nlist, assigning ‘undef’ is forbidden:

forbidden as / would be a list
"/" = list(1, 2, 3);
forbidden as / would be an (undefined) element
"/" = undef;
allowed
"/" = create("some_struct_template");

IST-2000-25182 PUBLIC 26/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

If you need to cast an element to another type, you can use the builtinto typefunctions, for instance:

"/x" = 1;
"/y" = "/x is " + to_string(value("/x"));

The data types are the only ones permanently checked by the compiler, all the others (described in
the following sections) are checked only at validation time.

4.4. BUILTIN TYPES

Pan has twelve builtin types that can be used directly in the type statements. They are the seven data
types plus:

• property: any property

• resource: any resource

• fetch: a string which is a valid URI

• stream: a string which is a valid URI

• embed: a string

The last three types have a well defined meaning (see [3]). When associated with an element, they
will appear in the generated XML. For instance:

type "/x" = fetch;
"/x" = "http://cern.ch/data";
"/y" = "http://cern.ch/data";

will generate:

<nlist name="profile">
<string name="x" type="fetch">http://cern.ch/data</string>
<string name="y">http://cern.ch/data</string>

</nlist>

4.5. ALIAS TYPE

There are five ways to define new types based onexistingones and therefore five forms oftype-spec.
The first one is used to give an alias to an existing type, optionally adding some constraints. The

syntax is:

type-spec7→ identifier [‘ (’ long ‘)’] [with dml]
type-spec7→ identifier ‘ (’ [long] ‘ ..’ [long] ‘)’ [with dml]

where identifier must be the name of an existing type anddml some validation code. Thelong
bounds (when specified) limit the possible values by imposing minimum and/or maximum values that
will be checked directly against the value (for long or double properties), the length (for string properties)
or the number of children (for resources). It is illegal to do bound checking on boolean properties. For
instance:

IST-2000-25182 PUBLIC 27/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

long which must be greater or equal to zero
define type ulong1 = long with self >= 0;

exactly the same thing but defined differently
define type ulong2 = long(0..);

unsigned short integer (for port numbers)
define type port = long(0..65535);

string with less than 255 characters
define type short_string = string(..255);

even long between -16 and +16
define type small_even = long(-16..16) with self % 2 == 0;

4.6. L INK TYPE

The second kind of type specification is used to represent links, which are strings containing the path
of anexistingelement (at the time of the validation). The link type is defined elsewhere[3]. The syntax
is:

type-spec7→ type-spec‘∗’ [with dml]

The validation code will be run against the string and the linked element must be of thetype-spec
type. For instance:

define type mylink = long(0..)* with match(self, ’r$’);
type "/foo" = mylink;
"/foo" = "/bar";
"/bar" = 1;

will generate:

<nlist name="profile">
<string name="foo" type="link">/bar</string>
<long name="bar">1</long>

</nlist>

The validation in the previous example ensures that the element"/foo" is a string that ends with
"r" and that is also the path of an unsigned long.

4.7. L IST TYPE

You can also define types that represent homogeneous lists. The syntax is:

type-spec7→ type-spec‘ [’ [long] ‘]’ [with dml]
type-spec7→ type-spec‘ [’ [long] ‘ ..’ [long] ‘]’ [with dml]

Elements of this type must be lists of elements of typetype-spec. The validation code will be run
against the list but the min/max constraints apply on the number of elements in the list. For instance:

list of one to four cpu (cpu is a type that must be previously defined)
define type cpus = cpu[1..4];

list of strings, the first one matching a given regexp
define type spec = string[1..] with match(self[0], ’ˆ(start|stop)$’);

IST-2000-25182 PUBLIC 28/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

4.8. TABLE TYPE

Similarly to homegeneous lists, you can define homegeneous tables with:

type-spec7→ type-spec‘{’ [long] ‘ }’ [with dml]
type-spec7→ type-spec‘{’ [long] ‘ ..’ [long] ‘ }’ [with dml]

4.9. RECORD TYPE

The last kind of type definition is useful to represent records which are simply nlists with children of
known names. The syntax is:

type-spec7→ ‘{’ field-spec-seq‘}’ [with dml]
field-spec-seq7→ field-spec[field-spec-seq]
field-spec 7→ string (‘ :’ | ‘?’) type-spec[with dml]
field-spec 7→ include identifier

Elements of this type must be nlists containingonly the listed fields, i.e. children with the right name
(string). The ones marked with ‘:’ are mandatory, the ones with ‘?’ optional. The children must be of
the specified type. The include field specification can be used to extend a record type (i.e. adding more
fields). For instance:

record type representing a CPU
define type cpu = {

"vendor" : string # name of the vendor
"model" : string # model as known by the vendor
"speed" : double # clock speed in MHz
"fpu" ? boolean # true if it has a FPU

};

same as cpu but with benchmarking information
define type detailed_cpu = {

include cpu
"specint95" : double
"specfp95" : double

};

4.10. EXAMPLES OF GLOBAL SCHEMA

A very simplified example of global schema can be found in Appendix B. Some compliant XML can
be seen in Appendix F.

Some much more complete examples can be found in the WP4 global schema available athttp:
//edms.cern.ch/document/352656 .

IST-2000-25182 PUBLIC 29/49

http://edms.cern.ch/document/352656
http://edms.cern.ch/document/352656

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

4.11. EMBEDDED DOCUMENTATION

The type specifications described above can also contain some documentation. An optionaldescrip-
tion or descrokeyword can be used to attach some string to the type definitions. This information is
currently ignored by the compiler but it will probably be used in the future to generate some documenta-
tion for the global data schema. Here is an example:

record type representing a CPU with embedded documentation
define type cpu = {

"vendor" : string description "name of the vendor"
"model" : string description "model as known by the vendor"
"speed" : double description "clock speed in MHz"
"fpu" ? boolean description "true if it has a FPU"

};

This feature is also used in the example in Appendix G.

IST-2000-25182 PUBLIC 30/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

5. ADVANCED FEATURES

5.1. VALIDATION

Arbitrary validation code can be attached to any part of the configuration tree. The syntax is:

statement7→ valid path ‘=’ dml ‘ ;’

At the end of the processing and before generating the LLD, the compiler will run all the attached
validation codes. If any of these does not return the true property, the validation fails and the compiler
aborts with an error message.

The givenpath must correspond to an existing element (at validation time), otherwise an error is
reported. This element can be used in the validation code via theself variable:

make sure that the machine has at least 256MB of RAM per CPU
valid "/hardware/memory/size" =

self >= 256 * length(value("/hardware/cpus"));

The validation code is not allowed to modify the configuration tree. The tree is effectively read-only
and any attempt to modify it will trigger a fatal error.

Theerror builtin function can also be used to give more user friendly error messages. For instance:

object template test;
valid "/test" =

self > 10 || error("too small: " + to_string(self));
"/test" = 7;
will give: validation error: user error: too small: 7

When combined with type definitions and user defined functions, the validation can easily enforce
arbitrary constraints on the generated LLD. The Appendix G shows an example of this where we make
sure that NFS servers indeed export the directories that NFS clients mount.

5.2. USER DEFINED FUNCTIONS

In addition to the builtin functions, Pan can also handle user defined functions. The syntax to define
a new function is:

statement7→ define function identifier ‘=’ dml ‘ ;’

All functions (builtin and user defined) reside in one global namespace and cannot be redefined.
At invocation time, the givendml will be executed and its result will be the result of the function.

One can also use thereturn function to return immediately from thedml.
Recursion is allowed but is limited to some arbitrary low limit. Pan is not a full blown programming

language and complicated functions are often a sign that something is wrong. Maybe another data schema
would simplify a lot the data handling.

The function parameters can be accessed via theargc variable (holding the number of parame-
ters passed) andargv (holding the parameters themselves). Up to the function code to check that the
parameters are indeed what is expected. For instance:

IST-2000-25182 PUBLIC 31/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

insert a string after another one in a list of strings
(or at the end if not found)
define function insert_after = {

if (argc != 3 || !is_string(argv[0]) || !is_string(argv[1]) ||
!is_list(argv[2]))

error("usage: insert_after(string, string, list)");
idx = index(argv[1], argv[2]);
if (idx < 0) {

not found, we insert at the end
splice(argv[2], length(argv[2]), 0, list(argv[0]));

} else {
found, we insert just after
splice(argv[2], idx+1, 0, list(argv[0]));

};
return(argv[2]);

};

The function parameters can be modified from within the function code. The following function
increments its first parameter by the value of the second one:

define function increment = {
argv[0] = argv[0] + argv[1];

};

"/test" = {
x = 1;
increment(x, 2);
return(x); # this will be 3

};

More examples can be found in the Appendix A.

5.3. GLOBAL VARIABLES

In addition to local variables, Pan can also handle global variables:

statement7→ define variable identifier ‘=’ dml ‘ ;’

This statement defines a global variable namedidentifierand gives it the valuedml. Variables can be
redefined, this effectively only change their value.

Global variables can be read from any DML block but they cannot be modified from the DML. The
following lines will generate an error:

define variable foo = 1;

"/test" = {
foo = 2; # error
return(3);

};

Pan provides two global variables. The first one is namedobject and contains the name of the ob-
ject template being processed. The second one is namedself and contains the element being processed,
i.e. being assigned to (for assignments) or being validated (for validation code).

Global variables are very useful when combined with declaration templates as they can represent
some values that can be changed without giving write access to the rest of the configuration tree. For
instance:

IST-2000-25182 PUBLIC 32/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

a template that the machine user can modify
declaration template host17_user;
define variable resolution = "1024x768";

a template that the machine sysadmin can modify
object template host17;
define variable resolution = "1280x1024";
include host17_user;
"/system/x/resolution" = resolution;

If the system administrator ofhost17 can indeed modify the templatehost17 while the machine
user can only modifyhost17 user , this guarantees that the user can effectively only change the X
server resolution from its default value. Any attempt to directly modify the configuration tree in the
declaration template is forbidden by the language.

IST-2000-25182 PUBLIC 33/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

6. FOR MORE INFORMATION

6.1. GLOSSARY

• aconfiguration informationis any piece of information that is needed in order to statically config-
ure a machine. It does not include dynamic information that changes while the machine is normally
running (e.g. the contents of a database hosted on the machine) and information generated by the
machine itself such as system load or the fact that the machine is being reconfigured.

• theconfiguration database(CDB) is the system holding configuration information for a given set of
machines (e.g. for a computer centre or for a whole site). It provides different views on the stored
information, optimised for the different access patterns of the programs requesting configuration
information.

• thehigh-level description(HLD) is the view optimised for high-level operations such as configu-
ration management of a large number of machines: it’s read-write and supports abstraction.

• thenode viewor low-level description (LLD) is the view optimised for normal machine configura-
tion operations: it’s read-only but scalable and contains only the configuration information relevant
to the machine requesting it.

• aconfiguration elementis a piece of configuration information. It may be a configuration property
or a configuration resource. Configuration elements form a tree structure.

• a property is a configuration element that holds a simple value. It is a leaf element in the tree of
configuration information formed by the configuration elements.

• a resourceis a configuration element that has other elements as children. It is an interior element
in the tree of configuration information formed by the configuration elements.

• a list is a resource that contains unnamed children elements.

• a nlist is a resource that contains named children elements. Two children cannot have the same
name.

• path is a identifier of a configuration element in the tree of configuration information.

6.2. ACRONYMS

• CCM: Configuration Cache Manager

• CDB: Configuration DataBase

• HLD: High-Level Description

• LLD: Low-Level Description

• XML: eXtensible Markup Language

• UNC: Universal Naming Convention

IST-2000-25182 PUBLIC 34/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

6.3. REFERENCES

[1] Lionel Cons and Piotr Poznański. Configuration Database Global Design, 2002. http://cern.ch/hep-
proj-grid-fabric-config.

[2] European Union DataGrid Project (EDG). http://www.eu-datagrid.org.

[3] Michael George. Node Profile Specification, 2002. http://cern.ch/hep-proj-grid-fabric-config.

[4] EDG Fabric Management Work Package (WP4). http://cern.ch/hep-proj-grid-fabric.

[5] EDG WP4 Configuration Task (WP4C). http://cern.ch/hep-proj-grid-fabric-config.

IST-2000-25182 PUBLIC 35/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

A SAMPLE FUNCTIONS

##
#
Useful functions.
#
$Id: functions.tpl,v 1.7 2002/08/12 07:55:04 cons Exp $
#
##

declaration template functions;

#
insert_after(string, string, list): insert the first string after the second
one (if found) or at the end (otherwise); the last argument is modified but
also returned as the result of the function
#

define function insert_after = {
if (argc != 3 ||

!is_string(argv[0]) || !is_string(argv[1]) || !is_list(argv[2]))
error("usage: insert_after(string, string, list)");

idx = index(argv[1], argv[2]);
if (idx < 0) {

not found, we insert at the end
splice(argv[2], length(argv[2]), 0, list(argv[0]));

} else {
found, we insert just after
splice(argv[2], idx+1, 0, list(argv[0]));

};
return(argv[2]);

};

#
given a disk name, return a table of three primary partitions for swap, root
and /var with a very simple space allocation algorithm
#

define function simple_partitions = {
if (argc != 1 || !is_string(argv[0]))

error("usage: simple_partitions(string)");
disk = argv[0];
disk_size = value("/hardware/devices/" + disk + "/size");
swap is twice the size of the physical memory
swap = nlist(

"disk", disk,
"type", "primary",
"size", 2 * value("/hardware/memory/size"),
"id", 82, # Linux swap

);
var is 256MB for disks larger than 2GB, 128MB otherwise
var = nlist(

"disk", disk,
"type", "primary",
"size", if (disk_size > 2048) 256 else 128,
"id", 83, # Linux

);
root is the rest
root = nlist(

"disk", disk,

IST-2000-25182 PUBLIC 36/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

"type", "primary",
"size", disk_size - swap["size"] - var["size"],
"id", 83, # Linux

);
order of partitions is swap, root and var
return(nlist(

disk+"1", swap,
disk+"2", root,
disk+"3", var,

));
};

IST-2000-25182 PUBLIC 37/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

B SAMPLE TYPES

##
#
Useful (but simplified) types.
#
$Id: types.tpl,v 1.4 2002/07/23 09:35:35 cons Exp $
#
##

declaration template types;

##
#
simple types
#

unsigned long
#(old style) define type ulong = long with self >= 0;
define type ulong = long(0..);

unsigned double
define type udouble = double(0..);

IPv4 address in dotted number notation
define type ipv4 = string with {

result = matches(self, ’ˆ(\d+)\.(\d+)\.(\d+)\.(\d+)$’);
if (length(result) == 0)

return("bad string");
i = 1;
while (i <= 4) {

x = to_long(result[i]);
if (x > 255)

return("chunk " + to_string(i) + " too big: " + result[i]);
i = i + 1;

};
return(true);

};

##
#
hardware types
#

memory record
define type memory_t = {

"size" : ulong
};

CPU record
define type cpu_t = {

"vendor" : string
"model" : string
"speed" : udouble

};

device record (describing some hardware devices such as disks)
define type device_t = {

"type" : string with match(self, ’ˆ(disk|cd|net)$’)
"vendor" : string
"model" : string

IST-2000-25182 PUBLIC 38/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

"size" ? ulong
"driver" ? string
"address" ? string

};

hardware record (describing some complete hardware information)
define type hardware_t = {

"vendor" : string
"model" : string
"serial" : string
"memory" : memory_t
"cpus" : cpu_t[1..] # list of at least one CPU
"devices" : device_t{} # table of devices, indexed by names such as hda

};

##
#
system types
#

mount record (describing what will end up in /etc/fstab)
define type mount_t = {

"device" ? string
"path" : string
"type" : string
"name" ? string
"options" ? string[]

};

partition record (describing how to partition the disks)
define type partition_t = {

"disk" : string with value("/hardware/devices/"+self+"/type") == "disk"
"type" : string
"size" : ulong
"id" : ulong

};

system record (describing some of the system configuration)
define type system_t = {

"mounts" : mount_t[1..] # list of at least one mount
"partitions" ? partition_t{} # table of partitions, indexed by e.g. hda1

};

##
#
root type
#

type of the root of the configuration information
define type root_t = {

"hardware" : hardware_t # hardware subtree
"system" : system_t # system subtree

};

declare that root is indeed of the root type
type "/" = root_t;

IST-2000-25182 PUBLIC 39/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

C SAMPLE STRUCTURE TEMPLATES

##
#
Sample hardware data.
#
$Id: hardware.tpl,v 1.5 2002/07/23 09:36:34 cons Exp $
#
##

##
#
cpus
#

structure template cpu_intel_p3_800;
"vendor" = "Intel";
"model" = "Pentium III (Coppermine)";
"speed" = 796.550; # MHz

structure template cpu_intel_p3_850;
"vendor" = "Intel";
"model" = "Pentium III (Coppermine)";
"speed" = 853.220; # MHz

##
#
disks
#

structure template disk_quantum_fireballp_as20_5;
"type" = "disk";
"vendor" = "QUANTUM";
"model" = "FIREBALLP AS20.5";
"size" = 19596; # MB

structure template disk_ibm_dtla_307030;
"type" = "disk";
"vendor" = "IBM";
"model" = "DTLA-307030";
"size" = 29314; # MB

##
#
cdroms
#

structure template cdrom_lg_crd_8521b;
"type" = "cd";
"vendor" = "LG";
"model" = "CRD-8521B";

##
#
network cards
#

structure template network_3com_3c905b;
"type" = "net";
"vendor" = "3Com";
"model" = "3c905B-Combo [Deluxe Etherlink XL 10/100]";

IST-2000-25182 PUBLIC 40/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

"driver" = "3c59x";

structure template network_intel_82557;
"type" = "net";
"vendor" = "Intel";
"model" = "82557 [Ethernet Pro 100]";
"driver" = "eepro100";

##
#
computers
#

structure template pc_elonex_850_256;
"vendor" = "Elonex";
"model" = "850/256";
"cpus" = list(create("cpu_intel_p3_850"));
"memory/size" = 256; # MB
"devices/hda" = create("disk_quantum_fireballp_as20_5");
"devices/hdc" = create("cdrom_lg_crd_8521b");
"devices/eth0" = create("network_3com_3c905b");

structure template pc_elonex_800x2_512;
"vendor" = "Elonex";
"model" = "800x2/512";
"cpus" = list(create("cpu_intel_p3_800"), create("cpu_intel_p3_800"));
"memory/size" = 512; # MB
"devices/hda" = create("disk_ibm_dtla_307030");
"devices/eth0" = create("network_intel_82557");

IST-2000-25182 PUBLIC 41/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

D SAMPLE TEMPLATES

##
#
Sample system data.
#
$Id: system.tpl,v 1.3 2002/07/26 09:47:03 cons Exp $
#
##

##
#
standard mounts
#

structure template mount_afs;
"path" = "/afs";
"type" = "afs";

structure template mount_proc;
"path" = "/proc";
"type" = "proc";

structure template mount_devpts;
"path" = "/dev/pts";
"type" = "devpts";
"options" = list("gid=5", "mode=620");

structure template mount_floppy;
"device" = "fd0";
"path" = "/mnt/floppy";
"type" = "ext2";
"options" = list("noauto", "owner");

structure template mount_cdrom;
"device" = undef;
"path" = "/mnt/cdrom";
"type" = "iso9660";
"options" = list("noauto", "owner", "ro");

##
#
mounting templates
#

add the standard Linux mount entries
template mounting_linux;
"/system/mounts" = merge(value("/system/mounts"), list(

create("mount_proc"),
create("mount_devpts"),
create("mount_floppy"),

));

add the AFS mount entry
template mounting_afs;
"/system/mounts" = merge(value("/system/mounts"), list(create("mount_afs")));

IST-2000-25182 PUBLIC 42/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

E SAMPLE OBJECT TEMPLATES

##
#
Sample object template.
#
$Id: sample.tpl,v 1.4 2002/08/12 07:57:49 cons Exp $
#
##

object template sample;

standard includes
include types;
include functions;

hardware information
"/hardware" = create("pc_elonex_850_256");
"/hardware/serial" = "CH01112041";
"/hardware/devices/eth0/address" = "00:d0:b7:a9:a3:47";

system information
"/system/partitions" = simple_partitions("hda");
"/system/mounts/0" = nlist("type" , "swap", "path", "swap", "device", "hda1");
"/system/mounts/1" = nlist("type" , "ext2", "path", "/", "device", "hda2");
"/system/mounts/2" = nlist("type" , "ext2", "path", "/var", "device", "hda3");
include mounting_linux;
include mounting_afs;

we also add a mount entry for our CD drive...
"/system/mounts" = merge(value("/system/mounts"),

list(create("mount_cdrom", "device", "hdc")));
...and make sure that hdc indeed contains a CD drive!
valid "/hardware/devices/hdc" = self["type"] == "cd";

IST-2000-25182 PUBLIC 43/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

F SAMPLE XML

<?xml version="1.0" encoding="utf-8"?>
<nlist name="profile" type="record">

<nlist name="hardware" type="record">
<string name="vendor">Elonex</string>
<string name="model">850/256</string>
<list name="cpus">

<nlist type="record">
<string name="vendor">Intel</string>
<string name="model">Pentium III (Coppermine)</string>
<double name="speed">853.22</double>

</nlist>
</list>
<string name="serial">CH01112041</string>
<nlist name="memory" type="record">

<long name="size">256</long>
</nlist>
<nlist name="devices" type="table">

<nlist name="hda" type="record">
<string name="type">disk</string>
<long name="size">19596</long>
<string name="vendor">QUANTUM</string>
<string name="model">FIREBALLP AS20.5</string>

</nlist>
<nlist name="hdc" type="record">

<string name="type">cd</string>
<string name="vendor">LG</string>
<string name="model">CRD-8521B</string>

</nlist>
<nlist name="eth0" type="record">

<string name="type">net</string>
<string name="vendor">3Com</string>
<string name="model">3c905B-Combo [Deluxe Etherlink XL 10/100]</string>
<string name="driver">3c59x</string>
<string name="address">00:d0:b7:a9:a3:47</string>

</nlist>
</nlist>

</nlist>
<nlist name="system" type="record">

<list name="mounts">
<nlist type="record">

<string name="type">swap</string>
<string name="path">swap</string>
<string name="device">hda1</string>

</nlist>
<nlist type="record">

<string name="type">ext2</string>
<string name="path">/</string>
<string name="device">hda2</string>

</nlist>
<nlist type="record">

<string name="type">ext2</string>
<string name="path">/var</string>
<string name="device">hda3</string>

</nlist>
<nlist type="record">

<string name="type">proc</string>
<string name="path">/proc</string>

</nlist>
<nlist type="record">

IST-2000-25182 PUBLIC 44/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

<string name="type">devpts</string>
<string name="path">/dev/pts</string>
<list name="options">

<string>gid=5</string>
<string>mode=620</string>

</list>
</nlist>
<nlist type="record">

<string name="type">ext2</string>
<string name="path">/mnt/floppy</string>
<string name="device">fd0</string>
<list name="options">

<string>noauto</string>
<string>owner</string>

</list>
</nlist>
<nlist type="record">

<string name="type">afs</string>
<string name="path">/afs</string>

</nlist>
<nlist type="record">

<string name="type">iso9660</string>
<string name="path">/mnt/cdrom</string>
<string name="device">hdc</string>
<list name="options">

<string>noauto</string>
<string>owner</string>
<string>ro</string>

</list>
</nlist>

</list>
<nlist name="partitions" type="table">

<nlist name="hda1" type="record">
<string name="disk">hda</string>
<string name="type">primary</string>
<long name="size">512</long>
<long name="id">82</long>

</nlist>
<nlist name="hda2" type="record">

<string name="disk">hda</string>
<string name="type">primary</string>
<long name="size">18828</long>
<long name="id">83</long>

</nlist>
<nlist name="hda3" type="record">

<string name="disk">hda</string>
<string name="type">primary</string>
<long name="size">256</long>
<long name="id">83</long>

</nlist>
</nlist>

</nlist>
</nlist>

IST-2000-25182 PUBLIC 45/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

G EXAMPLE OF CROSS OBJECT VALIDATION

##
#
Simplified example of cross object validation.
#
All the NFS clients check that the NFS servers that they use indeed export
the directories that they mount. This is done transparently by adding some
validation code to the mount record type. Further checks such as wildcards
in export list or export/mount options mismatch are left as an exercise for
the reader ;-)
#
Here is how to compile the server and two clients (result on stdout):
% pan --stdout --output=nfssrv1 xvalidation.tpl (will succeed)
% pan --stdout --output=nfsclt1 xvalidation.tpl (will succeed)
% pan --stdout --output=nfsclt2 xvalidation.tpl (will fail)
#
$Id: xvalidation.tpl,v 1.5 2002/07/23 09:24:30 cons Exp $
#
##

##
#
types definitions
#

template types;

export record (roughly what is in /etc/exports)
define type export = {

"path" : string description "path of the exported directory"
"client" : string description "name of client allowed to mount it"
"options" ? string[] description "list of exporting options like ro"

};

mount record (roughly what is in /etc/fstab)
define type mount = {

"device" : string description "device as understood by the mount command"
"path" : string description "path of the mount point"
"type" : string description "type of the mounted filesystem"
"name" ? string description "name or label of this mount entry"
"options" ? string[] description "list of mounting options like ro"

} with valid_mount(self);

validation of a mount record (only nfs type records are checked)
define function valid_mount = {

the mount record is our only argument
mount = argv[0];
we only care about NFS mounts, other types are considered OK
if (mount["type"] != "nfs")

return(true);
the device field will give us the NFS server and path
result = matches(mount["device"], ’ˆ([\w\.\-]+):(.+)$’);
if (length(result) == 0)

error("bad nfs device: " + mount["device"]);
server = result[1];
path = result[2];
we now look at the server’s exports list
exports = value("//" + server + "/system/exports");
i = 0;
len = length(exports);

IST-2000-25182 PUBLIC 46/49

PAN L ANGUAGE SPECIFICATION
version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

while (i < len) {
we check if this export record is good for us by checking the client
field against object (i.e. the name of the current object template)
and the path; we want exact match and ignore the export/mount options
if (exports[i]["client"] == object && exports[i]["path"] == path)

return(true);
i = i + 1;

};
we haven’t found any export record matching our needs, we complain:
error("server " + server + " does not export " + path + " to " + object);

};

##
#
NFS server definition
#

object template nfssrv1;

type settings
include types;
type "/system/exports" = export[];

data for this host
"/system/exports" = list(

nlist(# we export /home to hostx
"path", "/home",
"client", "hostx",

),
nlist(# we export /home to nfsclt1, read-only

"path", "/home",
"client", "nfsclt1",
"options", list("ro"),

),
);

##
#
NFS clients definitions
#

template client;

type settings
include types;
type "/system/mounts" = mount[];

data for this host
"/system/mounts" = list(

nlist(# we mount /dev/hda1 as the root filesystem
"device", "/dev/hda1",
"path", "/",
"type", "ext2",

),
nlist(# we NFS mount /home from the server nfssrv1

"device", "nfssrv1:/home",
"path", "/home",
"type", "nfs",

),
);

IST-2000-25182 PUBLIC 47/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

first client: known by the server, compilation will succeed
object template nfsclt1;
include client;

second client: unknown to the server, compilation will fail with:
*** user error: server nfssrv1 does not export /home to nfsclt2
object template nfsclt2;
include client;

IST-2000-25182 PUBLIC 48/49

PAN L ANGUAGE SPECIFICATION

version 2.0.2

Doc. Identifier:
DataGrid-04-TED-0153

Date: April 2, 2003

H VERSION HISTORY

2.0.2 (April 2, 2003): template names are now less restricted (see section 1.4.).

2.0.1 (November 14, 2002): added more builtin functions (escape , unescape , first and
next), improved theindex builtin function to search for nlists, extended the scope of theself vari-
able (see section 5.3.).

2.0.0 (October 2, 2002): initial version of this document.

IST-2000-25182 PUBLIC 49/49

	Introduction
	Document Conventions
	Configuration Information
	Paths
	Identifiers And Names
	Processing

	Main Syntax
	Templates
	Statements

	Data Manipulation Language
	Literals
	Flow Control
	Operators
	Functions
	Variables

	Types
	Introduction
	Types' Hierarchy
	Data Types
	Builtin Types
	Alias Type
	Link Type
	List Type
	Table Type
	Record Type
	Examples of Global Schema
	Embedded Documentation

	Advanced Features
	Validation
	User Defined Functions
	Global Variables

	For More Information
	Glossary
	Acronyms
	References

	Sample Functions
	Sample Types
	Sample Structure Templates
	Sample Templates
	Sample Object Templates
	Sample XML
	Example of Cross Object Validation
	Version History

